Recall the formal definition of a limit of a function $f : \mathbb{R} \to \mathbb{R}$. We say that $\lim_{x \to c} f(x) = L$ if

$$
(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})[0 < |x - c| < \delta \implies |f(x) - L| < \epsilon]
$$

Problem 1 Let $f(x) = 3x - 4$. Let $\epsilon = \frac{1}{100}$. Find a $\delta > 0$ so that for all $x \in \mathbb{R}$,

$$
0 < |x - 2| < \delta \implies |f(x) - 2| < \frac{1}{100}
$$

Problem 2

Show that $\lim_{x\to 0} \frac{1}{x}$ $\frac{1}{x} \neq 100$ by proving the negation:

$$
(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in \mathbb{R}) \left[0 < |x| < \delta \land \left|\frac{1}{x} - 100\right| \ge \epsilon\right]
$$

Hint: since we are allowed to choose ϵ and x, it suffices to let $\epsilon = 1$ and only consider positive values of x.

Problem 3

For each of the following problems you may draw a graph to support your reasoning instead of giving [a](#page-0-0) full proof. α

1. Define
$$
h : \mathbb{R} \to \mathbb{R}
$$
, $h(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. Does $\lim_{x \to 0} h(x)$ exist?

2. Define
$$
h : \mathbb{R} \to \mathbb{R}
$$
, $h(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. Does $\lim_{x \to 0} h(x)$ exist?

3. Define $h: (-1,1) \setminus \{0\} \to \mathbb{R}, h(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \end{cases}$ $\begin{array}{ll} \infty & x \in \mathcal{L} \\ 0 & x \notin \mathbb{Q} \end{array}$. Does $\lim_{x \to 0} h(x)$ exist?

 $\overline{\text{a}}$ Don't do this on your assignment.

Problem 4

Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies

$$
\lim_{x \to \infty} f(x) = L.
$$
\n1. Write down the definition of\n
$$
\lim_{x \to \infty} f(x) = L.
$$
\n2. Write down the definition of\n
$$
\lim_{y \to 0^+} f\left(\frac{1}{y}\right) = L.
$$
\n3. Show that\n
$$
\lim_{y \to 0^+} f\left(\frac{1}{y}\right) = L.
$$

Problem 5

Recall that if f, g are defined in some interval around $c \in \mathbb{R}$, and

$$
\lim_{x \to c} f(x) = M \quad \text{and} \quad \lim_{x \to c} g(x) = N,
$$

then

$$
\lim_{x \to c} [f(x) + g(x)] = M + N \quad \text{and} \quad \lim_{x \to c} [f(x)g(x)] = MN.
$$

This problem shows why it is necessary for $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ to exist in the above.

- 1. Give an example of an f, g defined in an interval around $c \in \mathbb{R}$ such that $\lim_{x \to c} [f(x) + g(x)]$ exists but $\lim_{x \to c} f(x)$ or $\lim_{x \to c} g(x)$ don't exist.
- 2. Give an example of an f, g defined in an interval around $c \in \mathbb{R}$ such that $\lim_{x \to c} [f(x)g(x)]$ exists but $\lim_{x \to c} f(x)$ or $\lim_{x \to c} g(x)$ don't exist.

Problem 6

Use squeeze theorem in the following questions.

- 1. Write down the statement of squeeze theorem.
- 2. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$
f(x) = \begin{cases} x & x = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}
$$

Show that $\lim_{x\to 0} f(x) = 0$.

3. Show that for any function $f : \mathbb{R} \to \mathbb{R}$,

$$
\lim_{x \to c} |f(x)| = 0
$$

if and only if

$$
\lim_{x \to c} f(x) = 0.
$$